電離室是一種探測電離輻射的氣體探測器。下面讓我們來了解一下電離室的運行原理吧。
氣體探測器的原理是,當探測器受到射線照射時,射線與氣體中的分子作用,產生由一個電子和一個正離子組成的離子對。
這些離子向周圍區域自由擴散。擴散過程中,電子和正離子可以復合重新形成中性分子。但是,若在構成氣體探測器的收集極和高壓極上加直流的極化電壓V,形成電場,那么電子和正離子就會分別被拉向正負兩極,并被收集。隨著極化電壓V逐漸增加,氣體探測器的工作狀態就會從復合區、飽和區、正比區、有限正比區、蓋革區(G - M區)一直變化到連續放電區。
所謂電離室即工作在飽和區的氣體探測器,因而飽和區又稱電離室區。如圖11-1所示,在該區內,如果選擇了適當的極化電壓,復合效應便可忽略,也沒有碰撞放大產生,此時可認為射線產生的初始離子對N0恰好全部被收集,形成電離電流。該電離電流正比于N0,因而正比于射線強度。
加速器的監測探測器一般均采用電離室。標準劑量計也用電離室作為測量元件。電離室的電流可以用一臺靈敏度很高的靜電計測量。
不難看出,電離室主要由收集極和高壓極組成,收集極和高壓極之間是氣體。與其他氣體探測器不同的是,電離室一般以一個大氣壓左右的空氣為靈敏體積,該部分可以與外界*連通,也可以處于封閉狀態。
其周圍是由導電的空氣等效材料或組織等效材料構成的電極,中心是收集電極,二極間加一定的極化電壓形成電場。為了使收集到的電離離子全部形成電離電流,減少漏電損失,在收集極和高壓極之間需要增加保護極。
當X射線、γ射線照射電離室,光子與電離室材料發生相互作用,主要在電離室室壁產生次級電子。次級電子使電離室內的空氣電離,電離離子在電場的作用下向收集極運動,到達收集極的離子被收集,形成電離電流信號輸出給測量單元。